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ABSTRACT
g4

217

The linear perturbation equations describing the
first variation of the state variables along a powered flight
path are employed to develop the necessary conditions
which must be satisfied on an optimized standard trajec-
tory. It is shown that the minimization of some explicit
function of the end coordinates, subject to certain other
boundary functions being zero, can be interpreted as being
the limiting case of minimizing the sum of the squares of
variationsin these functions. Employing this interpretation,
a control law is developed to obtain neighboring optimum
trajectories in the presence of small initial condition
disturbances. The variations in the boundary functions
resulting from this control law are derived, and the effect

of varying the final time is discussed. It is shown that

““in the limit’’ control-

the system is always stable, and is
lable. The technique is applied to the control of satellite

orbit injection.
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A TECHNIQUE FOR OPTIMUM FINAL VALUE CONTROL OF
POWERED FLIGHT TRAJECTORIES

Carl G. Pfeiffer

. INTRODUCTION AND SUMMARY

This paper develops a technique for controlling the acceleration vector along a powered flight
trajectory, the scheme being based upon considering linear perturbations about a standard (nominal) tra-
jectory. It is assumed that the standard trajectory has been optimized by chosing a control program which,
for the given initial condition, causes the final state to be attained in such a way as to minimize an
explicit function of the end coordinates and time, subject to certain end constraints. The task, then, is to
construct a perturbed control program, to be applied between the initial and final time, which will re-

optimize the trajectory i the presence of small disturbances to the initial conditions.

This well-known problem is complicated by the optimality property of the standard trajectory,
which implies that variations in the control program have no first-order effect on the pay-off function.
Recent work by Breakwell, Bryson, and Kelly (Ref. 1 and 2) considers the second variation of the standard
trajectory, leading to a rather complex control law which possesses potential instability near the end point.

3

This difficulty is eliminated here by interpreting the optimization problem to be “‘equivalent’ (in a first-

order sense) to the minimization of a certain quadratic function of the end coordinates.

Employing this interpretation in constructing neighboring extremals, it is shown that a simple and
well-behaved control law results from ignoring the second variation of the state variables from the standard
trajectory, thereby developing control equations which are functions of the elements of the familiar state-

transition matrices (the adjoint variables). This approach effectively yields a trajectory which achieves the
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standard end conditions “‘as closely as possible””. Thus if & 9 is a vector composed of variations in the
“boundary functions’ defined at the fixed final time t, the corrective control between fixed initial and final

times yields

Sq; = kLK + W171 5q,

where 5;0 is evaluated from initial condition variations, W is a known matrix, [ is the identity, and k is the
“‘uncorrectable’ component of S;f' The variation resulting from small changes in the final time is derived,
which is then combined with S;f to yield the total 3;. The *‘controllability’’ of the system is discussed,
and it is shown how the important velocity-to-be gained approach to guidance and control problems can be

placed within the framework of this analysis. An application of the method is presented.

Il. DESCRIPTION OF THE PROBLEM'

A point mass is moving under controlled acceleration according to
;= f(x’ C, l) (1)

where the x; are the n state variables of the system (the position and velocity coordinates), the c; are the

m independent control variables of the system (such as the attitude angles of the control acceleration
vector), and ¢ is time. The functions f; are assumed to be piecewise differentiable with respect to the state
and control Variai)les, and the control variables may be bounded. There exists an optimized standard
(nominal) trajectory which, starting from the initial condition ;S(LO), and employing the control variable
program -c_'_s(t), attains the final state ;s(tf) in such a way as to minimize at L the function pl(.x—, t), subject
to the constraints pi(;, t) = given% where i =2, .-+, . Without loss of generality, all Pis will be assumed
equal to zero. It follows that the ‘“penalty’ function minimized at tg on the standard trajectory is (Ref. 3)

4
p=Vv p= by Vipi(;’ tf) (2)

i=1

Notation: The bar (—) indicates a column vector; matrices are denoted by capital letters; [ is the identity
matrix; the superscript T indicates the transpose; the subscript s refers to the standard trajectory; and 8 refers to a

variation taken at a fixed time. When appropriate, the notation (¢) will be omitted when referring to time-varying quantities,

This corresponds to the Mayer formulation of the optimization problem. The case where pyisto be maximized
is treated by reversing the signs on the p; functions.
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where the 1, are known constants, v, being taken equal to 1.0. (The v, must be found by an iterative search
procedure in the construction of the standard trajectory. Examples of optimum powered flight trajectories
are discussed in Ref. 4.) Control is terminated (control acceleration set equal to zero) at 7z It is the

purpose of this paper to develop a perturbed control variable program, & ¢ (t) = ¢ (¢t) — :S(t) for ey <t < tes
to be employed in the presence of a small initial condition variation, 8;(t0), which will cause the standard

end conditions to be attained “‘as closely as possible’’. The technique for doing this will be discussed in

Sec. 1V,

Following a useful approach of guidance and control analysis (Ref. 5), the first variation of the

state variables from the standard trajectory is described by the ‘‘variational equation”

d _ _ —
— (bx) =Féx + G&¢ 3)
dt

where 8% = x(¢) - ;s(t), 8¢ = ¢ (1) —E-s(t), G is the n x m partial derivative matrix

6?(t)
de(e)

and F is then n x n partial derivative matrix

af (1)
dx (o)

Associated with Eq. (3) is the state transition matrix U(tf, t) which, along the standard trajectory, follows

the differential equation

d
— U +UF =0 (4)
dt

and has end conditions

U('f"f) =1 (5)

where [ is the identity matrix, and i is a given final time. The elements of U are the familiar adjoint

variables. Thus

—d—[U8§]=UGSE_ (6)
dt
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and

t

5% = 8% () = Uleyrtg) 3% (rg) + ftof Uy, ) G(0) 52(e) de (7)

Equation (7) is the fundamental equation of linear control analysis. It will be the linearized problem
described by Eq. (7) which will be considered in this paper, assuming that the U matrix is invariant in a

small neighborhood of the standard trajectory.

lll.  THE OPTIMALITY CONDITIONS

Equation (7) leads to a derivation of necessary conditions that must be satisfied in order for a

trajectory to be a minimum with respect to the control variables, in particular, the conditions satisfied on

the standard trajectory (Ref. 6).
From Eq. (2), the first variation in p is
Sp=vIP¢ % (8)

where P is the [ x n matrix [8?)—/8;f]. From Eq. (7), the first variation due to 8¢ () along the path is

t L
8p=§TPfo(;8?dt=ff'ﬁT8c7dt (9)
to to
where
T =3TPuc (10)

Let 8¢ (¢) be allowed to range between the boundaries

c;min (8) —¢; (£) < 8¢, (¢) < ¢; max () -c; () (11)
Consider an allowable variation & ¢ {t) # 0, which is applied for an interval €, and suppose that the

influence function m; # 0 in this interval. Then the total variation in p due to b ci(t) is

Dp = fe 7; 8 ¢; dt + higher order terms (12)

By taking & ci(t) = constant, it follows that

limit Ap = m,(¢8) 8¢,(¢) €> 0 (13)
€ > O
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if p is, in fact, minimized on the standard trajectory. This implies that c;  must be maximum if m; <0, or
minimum if m; > 0. Suppose instead that the 7)(z) = 0 in the interval €, causing p to be stationary with

respect to the control variables. Considering the second variation of p, it follows that

limit Ap = 8¢ 1(2) D(¢) 8¢ (¢) €> 0 (14)
€ > 0
where
=
p- |27 (15)
dc(r)

This implies that the matrix D is positive semi-definite over the interval €, which is a form of the classical
Legendre necessary condition. Since the ¢, are assumed independent, Eq. (13) and (14) can be combined to
state necessary conditions which must be satisfied on trajectories in the neighborhood of the path which

yields minimum p: either the control is on the boundary or

7)) =0 and 5cT(MDWsec (> 0 (16)

where 8¢ (t) is an arbitrarily small variation as allowed by Eq. (11). Equation (16) is analogous to the

necessary condition for a local minimum in the ordinary calculus.

The influence functions ni(t) are evaluated on the optimum trajectory, which must be found, in
general, by numerical search procedures. If it is assumed, however, that this task has already been
accomplished in constructing the standard trajectory, and that U matrix elements (Eq. 4) do not change on
trajectories near by the standard, the optimum control on perturbed trajectories is attained by either setting
¢; equal to one of its bounding values, or else applying Eq. (10) to achieve optimality with respect to ;-

The later situation is the most interesting, and will be the subject of the remainder of this paper.

The optimality conditions developed above can be concisely summarized as follows. Define
AN =7TPu (tf, t) 17

T

Rty =N (x, 0, ¢t) (18)

3The hi (¢) are called differential corrections for the function p (x, tf).



JPL Technical Report No. 32-447

where, from Eq. (1) and (4)

. dh
x,=(— (19)

No= o — (20)

dp l Ip
Ki(tf) = <——*_ + Z V]- <——> (21)

Then the Pontryagin maximum principle, or generalized Weierstrass condition, states that — A is maximum

with respect to the control variables (Ref. 7).

IV. THE MINIMIZED QUADRATIC FORM

Let the standard trajectory be stationary with respect to the control variables, and consider the
problem of determining the control & ¢ (¢) which re-optimizes the trajectory for small changes in the initial
state, ;(to). Since & ¢ (¢) has no first-order effect on the return function p, it is necessary to consider
at least the second variation of ¢ (¢) in order to construct such a family of neighboring extremals. The re-
optimization procedure is treated in a straightforward manner in Ref. 1 and 2, but, since it is required that
the standard end constraints be satisfied, a potential instability arises as t; » g The point of view to be
adopted here will eliminate this difficulty by interpreting the minimization of p = v TF (Eq. 2) to be

“‘equivalent’’ to the minimization (at the fixed time tf) of the quadratic form

(22)
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where a is a positive constant of proportionality, and the pi(;,t) are the ‘“‘boundary functions’’ defined above.
(It is assumed that the boundary functions are suitably normalized to make them dimensionally compatible.)
It will be seen that this approach leads to a simple and well-behaved control law, which is a generalization

of the well-known *‘required velocity’ concept currently being employed for guidance of rocket vehicles.

The first-order equivalence of the minimization of the penalty functions p and ¢ can be established
by supposing that a small initial condition error has been applied to the standard trajectory, and a perturbed
control program has been constructed such that the penalty function ¢ is minimized. From the discussion in

Sec. III, it follows that

77qT=2a;"{[PUG] =0 (23)

where 55 is the influence vector corresponding to the penalty function ¢, and ;m is the minimized value of

the boundary function vector

pT = (p, Pg 5 Pp) (24)

As the initial condition perturbation approaches zero, the elements of the influence matrix [P U G],
evaluated along the neighboring optimum trajectory, become equal to the values obtained on the standard
trajectory. From Eq. (10) and (23) it follows that 2 and Fm are both perpendicular to the columns of [P U G].
Thus, if these column vectors span the space perpendicular to 7 and ;m, it follows that v and ;m become

parallel, i.e., there is a constant 3 such that

Setting (2 a 3) = 1, the influence functions Eq and % (and the differential corrections )\q and \) become
identical, and the two optimization problems can be said to be equivalent in the first-order sense in the
limiting case ﬁ)—m |> 0. It is therefore reasonable to interpret the Lagrange multiplier vector on the standard

trajectory to be the limiting value of

o7 = 1, —, .., = (26)
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and to obtain a neighboring optimum control law which derives 8v from Eq. (26). From the definition of ¢ it

can be seen that this approach to the neighboring optimum control problem yields a perturbed trajectory which

attains the standard p ‘“as closely as possible.”” A geometrical interpretation of this analysis is presented

in Fig. 1.
Py = MINIMIZED VALUE OF P
Po = EFFECT OF INITIAL
CONDITION DISTURBANCE
P: = EFFECT OF CONTROL
PLANE SPANNED BY
COLUMNS OF [PUG])
Fig. 1. The Control Geometry
It will be convenient to define a rotated coordinate system (*), where
— % — p—
p =9g=1Lp
and hence
dq dp
o- |22 - |°P| -ip
dx dx
i b

where L is an orthogonal transformation chosen so that

(27)

(28)
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@O - ws) =k, 0, 0) (29)

From this construction it follows that the 9, direction lies along ;, and that ks = |;s | It is always

possible to construct a rotation matrix L when given v, by a Gramm-Schmidt process, for example. (The

L matrix is not unique.)

Consider now the variation in 7 (¢) (Eq. 10) between the control reference trajectory and a neigh-
boring extermal. Let it be assumed that the U and @ matrix elements are invariant, and that the mixed

partials of the f, with respect to ¢; and x; can be ignored. Then, dropping the (*) notation,

sT(y =0=slQUuT7)

=QuoTsv+D 8¢ (30)

g 5q

— 2 !

SVT = 0, <—‘> 2 *%% ( ) (31)
91 91

and D is an m x m matrix with elements

n 9% f,
d.= 3 >\k —_— (32
i
k=1 aciac].

(The D matrix was discussed in Section III.) Let the variation in g due to state variable deviations at some

where

initial time to be

8qq = QU (tf, ty) 8x (zp) (33)
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and the variation in g after corrective control action be

L
5, = sao-oftfuc §c di
0
t
- 57 - [ Louey ™) (UOYT 5T 4 (30
0 t()

where Eq. (30) has been used to determine ¢ (¢). (The existence of the inverse of D, and the choice of the
minus sign in Eq. (34), will be discussed in Section VI.) From Eg. (10), and because of the construction of

g, the first row of the matrix (QUG) is zero, and (ks + 6 ql) = k can be directly evaluated from Eq. (33).

Equation (34) can now be written

57, - 57, - % Wt 7, (35)

where
W (e, ) = jL;f QUG) (D7Y (Yue)T (36)

Thus
8, =k [kl + W, 191”87, (37)

Note that Eq. (37) always guarantees the system response to be well behaved for arbitrary input 6 ¢, even
as Ly > L The case & =0 will be discussed in Section VI. kquation (37) yields the & 27[ which has minimum
magnitude, resulting from the given variation in initial conditions, b ;(to), and control action between to

and Ly The process can be thought of as a nonlinear feed-back loop, as shown in Fig. 2.

k=8g (10)+kg

Fig. 2. The Control Process
10




JPL Technical Report No. 32-447

V. THE VARIATION IN FINAL TIME

The above fixed-time analysis ignored the effect of changing the g function by varying the time of
terminating the control accelerations by a small amount A¢. Let the “control time’’ t bet =

+Ag,
if A

Ly

where the magnitude of the control acceleration in the interval At is equal to its standard value at ¢

i

is positive, and equal to zero if A ¢ is negative. Consider ¢, to be the time at which the g is defined, then

85{: = _‘;(tc) - (_I_s(tc)

- i dq
g +QxDe+ <—q> oY
azf. ;

where Qv is the partial derivativé matrix relating g to the ‘“‘velocity coordinates’ v, i.e., those coordinates

\
= d - -

g, +Qx, A+ R W :qu+QvAv (38) 1\
azf ¢ !

f

I

f

with derivatives which are functions of F(tf). Thus

-
0,- | (39)
v

The Av is the increment in v due to changing the control acceleration vector in A¢, thus
v = t(f (e e85, t)=f(x (40)
Av ir[f(xsf,csf+5::f, tf) f(xsf, 0, tf)] At

[Note that in the definition of A% the effect of small changes in state variables due to terms of the form
(8 x) (At) have been ignored, which is consistent with this first order theory.] It is easily verified that |

the A% which minimizes 9, = (Z]—L_T ?c) is
A AR R T (41)

where it is assumed that the indicated inverse exists (the case where it does not will be discussed in the
following section). The quantity A% will be called the “‘generalized velocity-to-be-gained’’, in accordance
with the analogous concept in current guidance and control literature. It is the delta function of velocity
which must be added at t in order to satisfy the constraints in a least squares sense. It is attained by

varying _c_(tf) and At. The resultant 8¢ is

11
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— -1 -
89, - {1-0,00/0,17 0l 87, (42)
Notice that if ¢ is considered as the final time, Eq. (42) yields

ZI—CT Q, = (Ap Ay >‘3)tc =0 (43)

This is the “stopping condition’” which terminates the control.
VI. CONTROLLABILITY

The system will be said to be controllable with respect to a constraint g; if ¢,(¢,) is zero for all
initial condition errors & ;(to) (Ref. 8). From Eq. (42) it immediately follows that all q; are controllable
for small changes in ¢, if and only if (Qv)'1 exists. [f this is not the case, it is necessary to consider
?(tf) by referring to Eq. (37). It can be assumed that the inverse of (QZ‘ Q,) exists, for this matrix can

always be diagonalized, and the nonsingular submatrix corresponding to the nonzero eigenvalues can then

be considered. Thus if

AO
T T
M 1Q,0,] M=[00 (44)
where M is an orthogonal matrix and A is diagonal, then
T T - (Ao
7Ty @R[ (45)

would be defined as the ‘‘generalized inverse’’ (see work by Penrose).

The controllability of the system is related to properties of the W matrix. From Eq. (36) it can be
seen that W is symmetric and positive semi-definite, since D has these properties. The symmetry of D
follows from Eq. (32), and the positive semi-definite property follows from the discussion in Section III.
(W would be negative semi-definite if p were maximized.) The case |D| =0 over any interval along the path
is a singularity corresponding to an inflection point in ordinary minima problem. On such an interval D1
does not exist, and the integrand in Eq. (36) must be set equal to zero. With this discussion in mind,

imagine the W(tf, ty) matrix to be diagonalized by an orthogonal transformation. Denoting the transformed

system by A, Eq. (37) becomes

12




A A
q (tf) =Hq (g (46)
where H is a diagonal matrix with elements
lfori=1
1if ;=0
ii
by - @
k
ifw,, £0
A ii
E+w

The 1’4\1‘.‘. are the always-positive eigenvalues of the W matrix. It is Eq. (47) which demands that (~¥) instead
of (+ W) be employed in Eq. (34) in order to minimize & g. (The sign would be reversed if p were maximized
instead of minimized on the standard trajectory.) Note that the number of nonzero eigenvalues is equal to

the rank of Q or the rank of G, whichever is smaller.

It is now possible to say that the system is ‘““in the limit”’ controllable with respect to the com-
» A
ponents of g corresponding to the nonzero eigenvalues of W (tf, to), for

A
wii (tf’ to) > oo

and/or k > O

implies &/(k + w;;) > 0. Intuitively, this means that these components are approximately nulled at tys and

the final control lies nearly along the ¢, direction, thereby nulling ¢,.

VII. THE MINIMUM TIME TRAJECTORY - THE MINIMUM VELOCITY-TO-BE-GAINED

Suppose there is some vector to be nulled ‘“‘as closely as possible”, and, following Eq. (41), the

velocity-to-be-gained at b is

2y = -1elo ) ol o 8%, (48)
But, from Eq. {40),

AT AD = (constant) A2 (49)

13
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Thus, minimizing the magnitude of Av minimizes the variation in final time, At = te =t Letting p = A7,

and hence P = - [QZ Qv]—l QZ Q, the “minimum time’’ trajectory results.

This case presents an interpretation of the *

‘required velocity’’ approach to present day rocket
guidance problems, where at most three guidance equations, g, are to be nulled at Ly by the application of

A7, the g; defined such that the inverse of [ag/aﬂ exists. Eq. (48) then becomes

— 1 _
d d —
N I B (50)
dv ox
The conventional treatment of this problem usually involves constructing a steering program which causes
the vehicle to stay near the standard trajectory during the early portions of flight, and follows Eq. (50) near
L The above analysis provides a technique for accomplishing the desired task ‘‘optimally’’, eliminating

the ever-present problem of causing all components of A7 to go to zero simultaneously.

Vill. AN EXAMPLE*

Suppose a free-fall trajectory is to be attained with maximum horizontal speed, x, (=% is a minimum)
subject to the constraint )', =0andy = yss where the coordinate system is as shown in Fig. 3. The motion

will be assumed planar in a constant gravity field, g, with constant thrust acceleration, a, according to

x = acos @ (51)
y = asin 8 - g (52)
ry
als)
vite)
THRUST TERMINATED AT TIME /,
POWERED FLIGHT PATH
x

Fig. 3. The Standard Trajectory

4Discussed in Ref. 1.

14
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The control variable is . Equation (1) becomes

; )
Y ;‘2
dt x ;3
y j;:4.
e - b -
The U matrix (Eq. 2 through 7) is
-
1
0
U (tf, t) =
-
i 0

where 7 = (tf —t). Let the normalized p be

From Egq. (53)

e |

15

a cos O
asin § — ¢
*)

*2

0 ©

0 0

1 0

0 14

y-—-r
r

0 0 0
1
— 0 0
v
0 0 —
-sin 6
cos 6
0
0

(53)

(54)

(55)

(56)

(57)
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Suppose ;sT =(1, 0, o), where o is known. Then, from Eq. (24),

(vo 1)
tan 63(:) = (58)
r
Take the transformation
1 0 o]
1
L=|——1]]1o 1+02 0 (59)
1+ o2
o 0 -1
so that
1+02
L?/_S = 0 (60)
0
Then
- -
1 o
Z 0 0 v
v r
1 1+02
0-=LP-|—— 1]o D (61)
vl]+ o? v
o -1
_ 0 0 _
v r
L -
- 0 W
1 2
(QUG) = acos O — where v = V1 + O (62
v
-TV
;
- —
D-a i _ sin O . oT cos 0 _ -a 63)
06 v r v cos O

16
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(Notice that D is negative definite for £ in the first or fourth quadrant, which is guaranteed by Eq. (58).)

a8 vo
—~ = = [— ) cos? 6 (64)
dt r

G(tf =0 0 0 0

ar v
W(tf, to) = - 48 0 cos & - (—) sin &
vio o

0 v g vy 2 sin? 6
9(‘0) - (;) s (;) cos 6 J

where the minus sign has been chosen because of the negative-definite property of D. Applying Eq. (37),

Since, by Eq. (58),

Eq. (36) becomes

5‘11 = 8910 (65)

® g, k o+ wgq ~Woy ® 499
= p (66)

© 93 . —Woy kv wgy| | 2939

f
where
k

o = (67)

2
k + wzz) (k + w33) - wy;

Letting £ = v, the matrix elements in Eq. (66) may be interpreted as impulse response functions

3

which relate the controlled response & 9ig to the “‘open-loop’ response & ¢;,. These are plotted in Fig. 4
and 5 for a = 96.0 ft/secz, v = 25,000 ft/sec, r =600,000 ft, and o =0.1.

The effect of varying the final time can be obtained from Eq. (42).

17
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IX.  CONCLUSION

This paper has presented an analysis of the final value control problem which provides a simple
scheme for applying the control acceleration. It has been shown that the control functions and system
response are always well behaved, causing the standard end conditions to be attained “‘as closely as
possible”. The essence of the technique is the interpretation of the problem of minimizing a function of
the end coordinates, subject to constraints, to be equivalent to the minimization of a certain unconstrained
quadratic form. This approach can provide some insight into the properties of neighboring optimum tra-
jectories, and perhaps suggest a search routine for generating standard trajectories. Certain approxima-
tions suggest themselves, such as setting k = l'ﬂ (Eq. 37) for all perturbed trajectories, thereby obtaining
a linear control (Fig. 2). The problem of estimating the initial state of the system from noise contaminated

data fits nicely within the framework of this analysis. This area is yet to be explored.
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